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Abstract
We develop a method of squared wavefunctions for the vector nonlinear
Schrödingerequation. The squared wavefunctions of the octet representation of
SU(3) group give periodic solutions in terms of Weierstrass’ elliptic functions.
Specific limits of the obtained solution are the plane wave, the soliton and
cnoidal waves, which were previously obtained using the ansatz of stationary
motion.

PACS numbers: 02.30.Gp, 47.32.Cc

1. Introduction

The motion of light waves in a polarized environment is important for various optical devices.
It is described by the coupled nonlinear Schrödinger equation, which was named the Manakov
model or the vector nonlinear Schrödinger (VNLS) equation [1–4]. The integrability of
the model was first shown by Manakov who also obtained the bright soliton in a focusing
medium by applying the inverse scattering method [1]. The application of this type of
system to problems of wave physics and nonlinear optics was derived even before Manakov
[5]. Recently, there has been considerable interest in the effects of multiple modes, e.g.
multifrequency and/or two different polarizations, to dark solitons as well as to bright solitons
[6, 7]. The physical importance of the soliton solutions in the Manakov model was widely
studied by many authors, leading to the concept of optical switching and soliton-dragging
logic gates, etc [8].

Another interesting solution of the VNLS equation as an integrable theory is the periodic
solutions. The study of the periodic solutions of an integrable theory has a long history [9–13].
The techniques used were first developed to solve the Korteweg–de Vries equation,which relies
upon the important discovery that the solution of the periodic problem could be directly related
to algebraic geometry. Nowadays, there are many works on the VNLS equation. Quasi-
periodic solutions in terms of N-phase theta functions for the Manakov model are derived
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in [14], while a series of special solutions is given in [15–18]. In the framework of a
special ansatz [19–21] discussed periodic solutions associated with Lamé and Treibich–Verdier
potentials for the Manakov model.

The periodic solutions obtained by the finite-band method have rather complicated
form which makes it difficult to apply to real physical situations. And there arises the
additional problem of extraction of the real solutions [22, 23]. This problem was named the
‘effectivization’problem and was solved by a simple modification of the finite-band integration
method. This modified method gives solutions in the simplest but important one-phase case
[24–26]. The effectivization method was then applied to obtain periodic solutions of various
integrable theories associated with the 2 × 2 linear system [27–29]. It was also applied
to describe string configurations of space curve problems by the present author, including
the filament motions of fluid mechanics and the vortex motions of the Lund–Regge model
[30, 31].

In this paper, we apply the effectivization method to an integrable equation associated
with the 3 × 3 linear system, namely the vector nonlinear Schrödinger equation. To apply
the effectivization method to the Manakov model, proper ‘squared wavefunctions’ must be
constructed first. It was explained in section 2 that the adjoint octet representation of the
SU(3) group is well suited for this construction. Other irreducible representations only give
trivial solutions of the VNLS equation. This fact is explained in the discussion section.
Then the general set-up for the periodic problem of the VNLS equation is given in terms of
the squared eigenfunctions in section 2. Explicit construction of the lowest phase periodic
solution is followed using a modified version of the finite-band integration method in section 3.
The resulting formulae involve Weierstrass’ elliptic functions. In section 4, various specific
solutions from the reduction of periodic solutions are explained in terms of functional relations
of Weierstrass’ functions. Especially numerical plots as well as explicit check of solutions are
done with the help of the symbolic package, Mathematica. Section 5 gives the discussion.

2. The Manakov model

2.1. Linear equation for wavefunctions of fundamental representation

The VNLS equation is an integrable equation,

∂̄ψi + i∂2ψi + 2i
(|ψ1|2 + |ψ2|2

)
ψi = 0 i = 1, 2 (1)

where ∂ ≡ ∂/∂z, ∂̄ ≡ ∂/∂z̄. The associated SU(3) linear equation of the VNLS equation
(Lax pair) is

(∂ + E + λT )� = 0 (∂̄ + EẼ − ∂Ẽ − λE − λ2T )� = 0 (2)

where T = diag(2i/3,−i/3,−i/3),

E =
( 0 ψ1 ψ2

−ψ∗
1 0 0

−ψ∗
2 0 0

)
Ẽ =

( 0 iψ1 iψ2

iψ∗
1 0 0

iψ∗
2 0 0

)
(3)

and λ is an arbitrary spectral parameter [1, 32]. It is easy to see that the compatibility of the
linear equations,

[∂ + E + λT , ∂̄ + EẼ − ∂Ẽ − λE − λ2T ] = 0 (4)

gives the VNLS equation (1).
The existence of � as the solution of the linear equations (2) guarantees that ψ in E is a

proper solution of the VNLS equation. In general, the λ dependence of � is rather complex,
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even for the case of 1-soliton. The method of squared wavefunctions relies on the fact that
the λ dependence of the product of � is polynomial for special cases of quasi-periodic ψ .
The squared wavefunctions should constitute an irreducible representation of SU(3), while
� constitutes the fundamental triplet representation. Note that irreducible representations of
SU(3) can be constructed by proper mixing of symmetric and antisymmetric products of the
fundamental representation, which are conventionally represented by Young’s tableaux [33].

2.2. Linear equations for wavefunctions of adjoint representation

To illustrate the method of squared wavefunctions, we start with the irreducible adjoint
representation 8 of SU(3). The multiplet 8, which is in terms of Young’s tableaux, is

obtained by the symmetric product of the fundamental representation such that

Fijk = �
(1)
i �

(2)
j �

(3)
k + �

(1)
j �

(2)
i �

(3)
k − �

(1)
k �

(2)
j �

(3)
i − �

(1)
k �

(2)
i �

(3)
j . (5)

Here �
(1)
i , �

(2)
i , �

(3)
i each are solutions of equation (2) which constitute the fundamental 3

representation of SU(3). The eight ‘squared’ wavefunctions of the 8 multiplet, F112, F113,

F122, F123, F132, F133, F223, F233, satisfy the following linear equations,

∂F112 = (E + 2A)F112 + 2BF122 + IF113 + 2CF132

∂F113 = (2C − E)F133 + HF112 + 2BF123 + AF113

∂F122 = (A + 2E)F122 + D/2F112 + IF123 − C/2F223 + IF132

∂F123 = HF122 − G/2F112 + IF133 + BF223 + CF233 + DF113

∂F132 = HF122 + GF112 + IF12 − B/2F223 − 2CF233 − D/2F113

∂F133 = −(A + 2E)F133 + G/2F113 + BF233 + HF123 + HF132

∂F223 = (E − A)F223 + 2IF233 − 2GF122 + 2DF123

∂F233 = DF133 − GF132 + H/2F223 − (E + 2A)F233

(6)

where A = −2iλ/3, B = −ψ1, C = −ψ2,D = ψ∗
1 , E = iλ/3,G = ψ∗

2 ,H = I = 0.
The equations for the ∂̄ part are obtained with ∂ ↔ ∂̄ and taking A = 2 iλ2/3 − i|ψ1|2 −
i|ψ2|2, B = λψ1 + i∂ψ1, C = λψ2 + ∂ψ2,D = −λψ∗

1 + i∂ψ∗
1 , E = −iλ2/3 + i|ψ1|2,G =

−λψ∗
2 + i∂ψ∗

2 ,H = iψ1ψ
∗
2 , I = iψ∗

1 ψ2. As we will see in the next section, the 8 multiplet
gives the quasi-periodic solutions of the VNLS equation.

By explicit substitution of wavefunctions Fijk = ∑m
n=0 Fn

ijkλ
n in the linear equations (6),

we can obtain the following form of wavefunctions which are consistent with the linear
equations of ∂ and ∂̄ part. (This is the simplest one. A more general form will be given in the
discussion section.)

F112 = 2F ∗
233 = 2ic2ψ2(z, z̄) F113 = −F ∗

223 = 2ic1ψ1(z, z̄)

F122 = −F ∗
133 = d0(z, z̄) F123 = c1λ + d1(z, z̄) F132 = c2λ + d2(z, z̄)

(7)

where c1, c2 are real constants and d1, d2 are real functions of z, z̄, while d0 is a complex
function.

Kamchatnov made quasi-periodic solutions more effective by resolving the difficulty due
to the fact that the corresponding linear operator L that is not self-adjoint. The ‘effectivization’
method heavily depends on the invariants of the linear problems. As is well known, the
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multiplet 8 of SU(3) has two Casimir invariants, C2 and C3, which are

C2 = −2F112F233 + F113F223 + 4F133F122 − 4
3

(
F 2

132 + F 2
123 + F123F132

)
C3 = − 3

2F112F233(2F123 + F132) − 3
4F113F223(F123 + 2F132) − 3F133F122(F123 − F132)

+ F 2
123

(
2
3F123 + F132

) − F 2
132

(
F123 + 2

3F132
)

+ 9
2F113F112F233 + 9

4F112F223F133.

(8)

Using these definitions and the linear equations (6), it can be explicitly checked that C2 and
C3 are independent of z and z̄, and only functions of λ.

3. Periodic solutions

3.1. Q1,Q2,Q3 in terms of s2, s4, s5

As explained in the previous section, the effective method of squared wavefunction begins
with two invariants C2, C3 of SU(3) [34]. For this, we introduce constants of motion si or
λi, i = 1–5, which are defined as

C2 = − 4
3

(
c2

1 + c2
2 + c1c2

)
λ2 + s1λ + s2 = − 4

3

(
c2

1 + c2
2 + c1c2

)
(λ − λ1)(λ − λ2)

C3 = (c1 − c2)
(

5
3c1c2 + 2

3c2
1 + 2

3c2
2

)
λ3 + s3λ

2 + s4λ + s5

= (c1 − c2)
(

5
3c1c2 + 2

3 c2
1 + 2

3c2
2

)
(λ − λ3)(λ − λ4)(λ − λ5). (9)

Inserting Fijk in equation (7) into equation (8) and identifying it with equation (9), we can
obtain expressions of si in terms of ci, di, ψi . Explicitly, they are

s1 = − 4
3 (2c1d1 + 2c2d2 + c1d2 + c2d1)

s2 = − 4
3

(
d2

1 + d2
2 + d1d2 + 3c2

1Q1 + 3c2
2Q2 + 3R

)
s3 = c2

1(2d1 + d2) − c2
2(d1 + 2d2) + 2c1c2(d1 − d2)

= c2
1(2d1 + d2) + 2c1c2d1 − (1 ↔ 2 term)

s4 = c1
(
2d2

1 − d2
2 + 2d1d2

)
+ 3c2

1(c1 + 2c2)Q1 + 3c1R − (1 ↔ 2 term)

s5 = d1
(
d2

1 + 5
3d1d2 + d2

2

)
+ 3c2

1(d1 + 2d2)Q1 + 3d1R − (1 ↔ 2 term) + 9c1c2Q3

(10)

where Qi ≡ |ψi(z, z̄)|2, i = 1, 2, and Q3 ≡ ψ1ψ
∗
2 d0 + ψ∗

1 ψ2d
∗
0 and R ≡ |d0|2. Now by

solving for d1, d2,Q1,Q2 and Q3 in equation (10), we obtain

d1 = (
c2

1 − 2c1c2 − 2c2
2

)
s1/12c1c2(c1 + c2) + (c1 + 2c2)s3/9c1c2(c1 + c2)

d2 = (−2c2
1 − 2c1c2 + c2

2

)
s1/12c1c2(c1 + c2) − (2c1 + c2)s3/9c1c2(c1 + c2)

Q1 = (X1 + s4/9)
/
c2

1(c1 + c2) − R/c1(c1 + c2)

Q2 = (X2 − s4/9)
/
c2

2(c1 + c2) − R/c2(c1 + c2)

Q3 = [X3 − X4 + (c1d2 − c2d1)R + (c1 + c2)s5/9 − (d1 + d2)s4/9]/c1c2(c1 + c2)

(11)

where constants X1,X2 are

X1 = −(4c1 − c2)d1d2/9 − (4c1 + 2c2)d
2
1

/
9 − (c1 − c2)d

2
2

/
9 − (2c1 + c2)s2/12

X3 = (4c1 − 3c2)d
2
1d2/9 + (2c1 − 4c2)d

2
2

/
27 + c1d2s2/12.

(12)
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X2 (X4) is obtained by exchanging c1 ↔ c2, d1 ↔ d2 in X1 (X2). Note that this solution is
consistent with equation (6).

3.2. Derivation of R

Using equations (6) and (7), the equation for R = |d0|2 becomes

∂R = i(c1 + c2)(d
∗
0 ψ∗

1 ψ2 − d0ψ1ψ
∗
2 )

∂̄R = (d1/c1 + d2/c2)∂R.
(13)

Thus R is a function of Z ≡ z + (d1/c1 + d2/c2)z̄. The first equation of (13) can be rewritten as

(∂R)2 + (c1 + c2)
2Q2

3 = (c1 + c2)
2RQ1Q2. (14)

With the help of equation (11), equation (14) gives R in terms of Weierstrass’ ℘(u, g2, g3)

function. As far as Weierstrass elliptic functions are involved, we employ the terminology and
notation of [35] without further explanations. Explicitly

(∂R)2 = (c1 + c2)
2(4RQ1Q2 − Q2

3

) ≡ 4

c1c2
(X3 − g2X/4 − g3/4) (15)

where X ≡ R + β,

β = c2

2916(r + 2)

[
(126 + 216r2 + 297r + 45r3)s̃2

1 + (−24r3 + 120 − 36r2 + 108r)s̃1s̃3

+ (−108r3 − 756r2 − 1512r − 864)s̃2 + (−720 − 288r + 180r2 + 72r3)s̃4

+ (200 + 60r − 48r2 − 16r3)s̃2
3

]
(16)

g2 = c4(r + 1)

8748

[−8(r − 2)(2r + 5)2(6s̃3s̃5 + 6s̃2s̃4 − 2s̃2s̃
2
3 − 9s̃1s̃5 − 2s̃2

4 + s̃4 s̃1s̃3
)

+ 9(r + 1)3
( − 4s̃2 + s̃2

1

)2]
(17)

g3 = c6

4251 528

[
(r − 2)2(2r + 5)4

(−216s̃2
5 − 32s̃3

4 − 32s̃3
3 s̃5 + 144s̃3s̃4s̃5 + 8s̃2

3 s̃
2
4

)
+ (r − 2)(2r + 5)2(r + 1)3(−36s̃4s̃3 s̃

3
1 − 864s̃3s̃1s̃

2
2 + 72s̃2

3 s̃
2
1 s̃2 − 864s̃4s̃1s̃5

+ 648s̃2
1 s̃4 s̃2 + 864s̃3

2 − 864s̃3s̃5s̃2 − 864s̃4s̃
2
2 + 576s̃2

4 s̃2 + 72s̃2
4 s̃

2
1 + 576s̃2

3 s̃
2
2

+ 864s̃2
5 + 648s̃3s̃

2
1 s̃5 − 720s̃4s̃3s̃1 s̃2 + 1296s̃1s̃5s̃2 − 540s̃3

1 s̃5
)

+ (r + 1)6(−324s̃2s̃
4
1 + 1296s̃2

1 s̃
2
2 − 1728s̃3

2 + 27s̃6
1

)]
(18)

where c2 ≡ c1c2, r ≡ c1/c2 + c2/c1 and s1 = a1s̃1, s2 = a1s̃2, s3 = a2s̃3, s4 = a2s̃4, s5 =
a2s̃5, a1 = − 4

3c2(r + 1), a2 = 1
3c3

√
r − 2(2r + 5). Then

R = ℘(W + w3, g2, g3) − β. (19)

Here w3 is an integration constant and W = Z/c. The integration constant w3 is determined
by the initial condition, which we shall choose as follows; ℘(w3) = e3 at W = 0, where e3

is the smallest root of the equation 4x3 − g2x − g3 = 0. (The other two roots are denoted by
e1 and e2 with e1 > e2 > e3. w3 as well as w1 are called the half period of the ℘ function.
They satisfy ℘(w1) = e1, ℘ (w2) = e2, e1 + e2 + e3 = w1 + w2 + w3 = 0.) This condition is
required for R to be real. With this choice, R takes a value between e3 − β and e2 − β.
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3.3. Derivation of ψ1, ψ2

Now we try to obtain the ψ1 and ψ2 of the VNLS equation. Using equations (6) and (7), we
can obtain the following two equations:

c1∂[ψ1 exp(−id1z/c1)] = −id∗
0 ψ2 exp(−id1z/c1)

c2∂[ψ2 exp(−id2z/c2)] = id0ψ1 exp(−id2z/c2).
(20)

Similarly, we can find equations

2ic1∂̄ψ1 = 2ic1(d1/c1 + d2/c2)∂ψ1 + η1ψ1 2ic2∂̄ψ2 = 2ic2(d1/c1 + d2/c2)∂ψ2 + η2ψ2

(21)

where we introduce a constant η1,

η1 = 1

648c3
1c

4
2

[
144(2c2 − c1)c

2
1c

2
2s4 − 9

(
c4

1 + c3
1c2 − 6c2

1c
2
2 + 2c1c

3
2 + 2c4

2

)
s2

1

− 16
(
c2

1 + 2c2
2

)
s2

3 − 12
(
2c3

1 + c2
1c2 − 2c1c

2
2 − 4c3

2

)
s1s3 − 108

(
c2

1 + 2c2
2

)
c2

1c
2
2s2

]
(22)

and η2 is given by substituting c1 ↔ c2 and s3 → −s3, s4 → −s4 in η1. They have the
solution of the following form,

ψ1 =
√

Q1(Z) exp(iθ1(Z) − iη1z̄/2c1) ψ2 =
√

Q2(Z) exp(iθ2(Z) − iη2z̄/2c2)

d0 =
√

R exp(iθ3). (23)

Inserting equation (23) into equation (20), we can find that θi, i = 1, 2, satisfies the following
differential equation,

dθ1

dZ
= − Q3

2c1Q1
+

d1

c1

dθ2

dZ
= Q3

2c2Q2
+

d2

c2
. (24)

To integrate equation (24), we first introduce constants M1,M2, N1, N2 such that

Q3/Q1 = M1 + N1/Q1 Q3/Q2 = M2 + N2/Q2 (25)

where

M1 = [(
6c3

1 + 9c2
1c2 − 9c1c

2
2 − 6c3

2

)
s1 + 8

(
c2

1 + c1c2 + c2
2

)
s3

]/
36

(
c2

1c
2
2 + c1c

3
2

)
(26)

and M2 is given by substituting c1 ↔ c2 and s1 → −s1 in M1. Explicit form of N1, N2 is
not required here. Now using equations (19), (24) and (25) and the following identities of the
Weierstrass’ elliptic function:∫

dW

℘(W) − ℘(κ)
= 1

℘ ′(κ)

{
ln

σ(κ − W)

σ(κ + W)
+ 2ζ (κ)W

}
(27)

we can obtain

θ1 = −M1

2c1
Z +

i

2

[
ln

σ(κ1 − W − ω3)

σ (κ1 + W + ω3)
+ 2ζ(κ1)W + φ1

]

θ2 = M2

2c2
Z +

i

2

[
ln

σ(κ2 − W − ω3)

σ (κ2 + W + ω3)
+ 2ζ(κ2)W + φ2

] (28)

where two constants κ1, κ2 are defined by the following two relations:

℘(κ1) = β + (X1 + s4/9)/c1 ℘(κ2) = β + (X2 − s4/9)/c2 (29)

℘ ′(κ1,2) = dR

dW

∣∣∣∣
W=κ1,2

= ∓ic(c1 + c2)Q3

∣∣∣∣
Q1,2=0

= ∓ic(c1 + c2)N1,2. (30)



Squared wavefunctions approach to periodic solutions of vector nonlinear Schrödinger equation 4119

By substituting all the above results into equation (23) and using the identity

℘(W) − ℘(κ) = −σ(W + κ)σ (W − κ)

σ 2(W)σ 2(κ)
(31)

we finally obtain

ψ1 = i√
c1(c1 + c2)

σ (W + ω3 + κ1)

σ (W + ω3)σ (κ1)
exp

(
−i

M1

2c1
Z + i

d1

c1
Z − i

η1

2c1
z̄ − ζ(κ1)W − φ1

)

ψ2 = i√
c2(c1 + c2)

σ (W + ω3 + κ2)

σ (W + ω3)σ (κ2)
exp

(
i
M2

2c2
Z + i

d2

c2
Z − i

η2

2c2
z̄ − ζ(κ2)W − φ2

)
.

(32)

This is the main result of the present paper. Here, two constants φ1, φ2 are determined as

φ1 = ζ(ω3)κ1 φ2 = ζ(ω3)κ2 (33)

by requiring Qi = |ψi |2, i = 1, 2. Especially at W = Z = z̄ = 0, we find

ψ1(0) = i√
c1(c1 + c2)

σ (ω3 + κ1)

σ (ω3)σ (κ1)
exp(−φ1)

= i√
c1(c1 + c2)

√
℘(κ1) − e3 exp[ζ(ω3)κ1 − φ1] (34)

where we have used the identity

℘(u) − e3 = σ 2(u + ω3)

σ 2(u)σ 2(ω3)
exp{−2ζ(ω3)u}. (35)

Now using

Q1(0) = 1

c1(c1 + c2)
(℘ (κ1) − e3) (36)

we can obtain the result in equation (33).

3.4. Proper range of λi

There is some restriction on the range of parameters λi or si , which determines the
characteristics of the quasi-periodic solutions. From the definition of (9), it is obvious that
both λ1 and λ2 are real or constitute a complex pair. Similarly, all three λi, i = 3, 5, must be
real or one of them is real while the other two constitute a complex pair.

More restrictions on λi are related to the definition of Q1 = |ψ1|2,Q2 = |ψ2|2, R = |d0|2,
such that these three must be positive. Firstly, the discriminant of the Weierstrass equation,
� ≡ g3

2 − 27g2
3, must be positive, which then guarantees ei, i = 1, 3 have real values. In

this case, ℘(W + ω3, g2, g3) takes values between e3 and e2. Then using the solution in
equation (19), we can see that the condition R � 0 requires e3 � β. Using a similar argument,
we can see that the conditions Q1 � 0,Q2 � 0 each requires ℘(κ1) � e2 and ℘(κ2) � e2. In
the following, we call these restrictions the three positivity condition.

The explicit form of � is quite complex and here we discuss the characteristics for
some specific values of λi . Figure 1(a) shows the discriminant � with λ3 for λ4 =
−λ5 = 1, s̃1 = 2, s̃2 = 5, c = 1, r = 3. This case corresponds to λ1 = λ∗

2 = −1 + 2i.
It shows � has a positive value for three regions of (1) −15.34 � λ3 � −9.99,
(2) −6.83 � λ3 � 0.42 and (3) 14.87 � λ3 � 18.94. But explicit numerical calculation shows
that ℘(κ1)(= −19.90) � e2(= −11.03) and ℘(κ2)(= −43.86) � e2 in the region (1) (λ3 =
−15). Similarly, ℘(κ2)(= −153.48) � e2(= −11.88) and e3(= −12.49) � β(= −10.56)

in the region (3) (λ3 = 15). Various numerical computations with different values of λ3 show
that these two regions do not satisfy the three positivity conditions. But in the region (2), all
the required criteria are satisfied. We find that these features are maintained for various values
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Figure 1. The discriminant � with the value λ3. The parameters for (a) are λ4 = −λ5 = 1, λ1 =
λ∗

2 = −1 + 2i. The parameters for (b) are λ4 = −λ5 = i, λ1 = λ∗
2 = −1 + 2i.

of s̃1, s̃2, c, r . In fact, it can be shown that this feature is maintained when three λi, i = 3–5
are real, which follows due to the following two facts; (i) the discriminant is invariant under
the simultaneous shift of λi → λi + constant, (ii) the scaling property of � → ρ12� under
λi → ρλi, g2 → ρ4g2, g3 → ρ6g3. This property allows us to choose λ4 = −λ5 = 1 without
changing the essential feature of figure 1.

Figure 1(b) shows the discriminant � with λ3 for λ4 = −λ5 = i, s̃1 = 2, s̃2 = 5, c = 1,

r = 3. It shows � has a positive value for three regions: (1) −17.86 � λ3 � −9.14,
(2) −5.23 � λ3 � −0.017 and (3) 15.58 � λ3 � 18.69. Numerical experiment on this case
shows only the region (2) of the λ3 parameter satisfies the three positivity conditions. This
case corresponds to λ3 being real and λ4, λ5 constitute a complex pair.

For the case of λ4 = −λ5 = 1, s̃1 = 5, s̃2 = 2, r = 3, c = 1 and λ4 = −λ5 = i,
s̃1 = 5, s̃2 = 2, r = 3, c = 1, numerical computation shows that there does not exist a
proper range of λ3 which satisfies the three positivity conditions. This case corresponds to
λ1, λ2 = (−5 ±√

17)/2. We thus conclude that only a complex pair of λ1, λ2 gives the proper
quasi-periodic solutions.

4. Special cases

We have seen that a limited range of λi values gives the proper quasi-periodic solutions. In
this section we study some special cases of the obtained solution by explicitly taking specific
λi values.

4.1. Plane wave

A simple plane wave solution is obtained by taking c2 = −2c1, λ1 = λ∗
2 = a1+a2i. In this case,

any λ3, λ4, λ5 value gives the same result. In this case, g2 = m4/3, g3 = m6/27,m ≡ c1a2.
And � = 0, e1 = m2/3, e2 = e3 = −m2/6. The Weierstrass functions are given in a simple
form

℘(u) = −m2

6
+

m2

2
cosec2(mu/

√
2)

ζ(u) = m2u

6
+

m√
2

cot(mu/
√

2)

σ (u) =
√

2

m
exp(m2u2/12) sin(mu/

√
2).

(37)
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Figure 2. Two-component plane wave. The parameters are λ3 = −6.83, λ4 = −λ5 = 1, λ1 =
λ∗

2 = −1 + 2i.

And ω3 = −i∞, ℘ (κ1) = −m2/6, κ1 = −i∞, ℘ (κ2) = m2/3, κ2 = π/(
√

2m). Now,
a straightforward calculation gives d1 = −c1a1, d2 = 2c1a1,M1 = M2 = 0, η1 =
2c1a

2
1 + 3/2c1a

2
2, η2 = −4c1a

2
1 − 2c1a

2
2, Z = z − 2a1z̄, W = iZ/(

√
2c1). Finally

equation (32) gives the quasi-periodic solutions,

ψ1 = 0

ψ2 = − m

2c1
exp

(−ia1z − i
(
a2

1 − a2
2

/
2
)
z̄
)
. (38)

In this case, ℘(W + ω3) always takes the value e2 = e3.
More general two-component plane waves can be obtained at the � = 0 point of figure 1.

As an example, we take λ3 = −6.83 in figure 1with λ4 = −λ5 = 1, s̃1 = 2, s̃2 = 5. Numerical
computation gives g2 = 363.49, g3 = 1333.69, and e1 = 11.01, e2 = e3 = −5.50, ω3 = i∞.
And κ1 = 0.39 + 0.76i, κ2 = 0.39 + 0.20i, (−M1 + 2d1)/2c1 = (M2 + 2d2)/2c2 =
−0.56,−η1/2c1 = 2.52,−η2/2c2 = −6.63. With W = Z = z − 1.12z̄, figures 2(a)
and (b) show the real and imaginary parts of ψ1. Similarly, figures 2(c) and (d) plot ψ2.
We use Mathematica to obtain all these plots as well as the necessary numerical values.
We also use Mathematica to explicitly check that these ψi, i = 1, 2, satisfy the VNLS
equation (1).

4.2. 1-soliton

An example of the 1-soliton solution is obtained from our quasi-periodic solution when we
take c1 = c2 = 1, λ1 = λ∗

2 = a1 + a2i. In this case g2 = 4a4
2

/
3, g3 = − 8

27a6
2,� = 0 and
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Figure 3. Two-component soliton solution; (a) real part, (b) imaginary part, (c) absolute value of
ψ1 (=ψ2).

e1 = e2 = a2
2

/
3, e3 = −2a2

2

/
3, ω3 = −iπ/(2a2). The Weierstrass functions in this case are

given by

℘(u) = −2a2
2

/
3 + a2

2 coth2(a2u)

ζ(u) = −a2
2u

/
3 + a2 coth(a2u)

σ(u) = exp
(−a2

2u
2
/

6
)

sinh(a2u)/a2.

(39)

And ℘(κ1) = ℘(κ2) = a2
2

/
3, κ1 = κ2 = ∞,M1 = M2 = 0, d1 = d2 = −a1, η1 = η2 =

2
(
a2

1 + a2
2

)
. It then gives

ψ1 = ψ2 = a2√
2

sech(a2Z) exp
[ −ia1Z − i

(
a2

1 + a2
2

)
z̄
]

(40)

where Z = z − 2a1z̄. Figure 3 shows this two-component soliton solution which is obtained
by taking a1 = a2 = 1.

4.3. Solution by Jacobi’s elliptic functions

The conventional direct integration method using the stationary ansatz gives some specific
quasi-periodic solutions expressed by Jacobi’s elliptic functions. These types of solutions are
special cases of our solutions. The Weierstrass σ function appearing in the ψ solution in
equation (32) can be reduced to Jacobi’s elliptic functions under a certain limit. For this, we
first note that

σ(W + ω3 + κ1)

σ (W + ω3)
= exp

(
ζ(ω1)

2ω1

{
κ2

1 + 2κ1(W + w3)
}) H

(√
e1 − e3(W + ω3 + κ1)

)
H

(√
e1 − e3(W + w3)

) (41)

where H(u) ≡ θ1
(

π
2K

u
)
. Note that cn u =

√
k′
k
θ2

(
πu
2K

)/
θ4

(
πu
2K

)
, dn u = √

k′θ3
(

πu
2K

)/
θ4

(
πu
2K

)
and θ1

(
u+ π

2

) = θ2(u), θ1
(
u+ πθ

2

) = iq−1/4 e−iuθ4(u). Here we use the notation of [36]. Thus
it is required π

2K

√
e1 − e3κ1,2 → π

2 , πτ
2 to achieve our goal. In other words, κ1,2 → w1,2. One

such example is given by taking λ3 = −3, λ4 = −λ5 = 1, λ1 = λ∗
2 = −1 + 2i. In this case,
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Figure 4. A typical two-component quasi-periodic solution with λ3 = 4, λ4 = −λ5 = i, λ1 =
λ∗

2 = −1 + 2i, c = 1, r = 3; (a) real, (b) imaginary part of ψ1, (c) real, (d ) imaginary part of ψ2.

℘(κ1) = e2 = −1.46, ℘ (κ2) = e1 = 6.16, ω1 = κ2 = 0.52, ω3 = 0.63i, κ1 = ω1 + ω3. And
g2 = 271 360/2187, g3 = 89 862 400/531 441, (−M1 + 2d1)/2c1 = (M2 + 2d2)/2c2 = 1,

−η1/2c1 = −7.63,−η2/2c2 = −15.25,W = Z = z + 2z̄. Especially, the W -dependent part
of ψ1 becomes

ψ1 ∼ σ(W + ω3 + κ1)

σ (W + ω3)
exp[−ζ(κ1)W ] ∼ cn(

√
e1 − e3W). (42)

In the course of the above derivation,we use the Legendre relation ζ(ω1)ω2 = ζ(ω2)ω1 ± iπ/2.
Similarly, we can show ψ2 ∼ dn(

√
e1 − e3W). All these calculations are numerically checked

using Mathematica.

4.4. General quasi-periodic solution

Most generally, the solution in equation (32) describes a two-component quasi-periodic
solution. Figure 4 shows one example which is obtained by taking λ3 = 4, λ4 = −λ5 = i, λ1 =
λ∗

2 = −1 + 2i, c = 1, r = 3. In this case, g2 = 244 256/2187, g3 = 88 146 620/531 441,

ω3 = 0.67i, κ1 = −0.53 − 0.60i, κ2 = 0.53 − 0.05i. And (−M1 + 2d1)/2c1 = (M2 + 2d2)/

2c2 = 0.59,−η1/2c1 = −6.26,−η2/2c2 = −13.51 with W = Z = z + 1.185z̄. This is one
of the most general configurations described by our periodic solutions.

5. Discussions

In this paper, we apply the method of squared wavefunctions to constructing periodic solutions
of the VNLS equation, which improves the effectiveness of the solution. The solution was
explicitly given in terms of Weierstrass’ elliptic functions. The solution reduces to the already
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known forms by taking specific values of parameters in the solution. It contains the plane
wave, the soliton and the periodic solution expressed in terms of Jacobi’s elliptic functions.

In this paper, we use the adjoint 8 representation of SU(3) group to construct the
squared wavefunctions. Other irreducible representations of the SU(3) group do not give
any interesting solution of the VNLS equation. For example, the multiplet 6, which is

i j in terms of Young’s tableaux, is obtained by a symmetric product of the fundamental
representation such that

Fij = �
(1)

i �
(2)

j + �
(1)

j �
(2)

i . (43)

There are six independent elements, F11, F12, F13, F22, F23, F33, in the multiplet 6. Then the
linear equations (2) on � give the following linear equations for Fij :

∂F11 = 2BF12 + 2AF11 + 2CF13

∂F12 = IF13 + DF11 + BF22 + CF23 + (E + A)F12

∂F13 = CF33 + GF11 − EF13 + BF23 + HF12

∂F22 = 2IF23 + 2DF12 + 2EF22

∂F23 = IF33 − AF23 + GF12 + HF22 + DF13

∂F33 = 2HF23 − 2EF33 + 2GF13 − 2AF33.

(44)

The notation A,B, . . . is explained below equation (6). Now, let us assume that Fij are
polynomials in λ such that Fij = ∑m

n=0 Fn
ij λ

n for some integer m. Inserting this expression in
equation (44) and considering the coefficient of λm+1, we can find Fm

ij = 0, which only gives
a trivial solution. To avoid this, we need to take an irreducible representation such that part
of the linear equations such as in (44) have no λT term. This requires us to take irreducible
representations with 3n (i.e. 3, 6, 9, . . . ) boxes in Young’s tableaux.

But representations having three boxes in Young’s tableaux such as 1 multiplet
i
j
k

and

10 multiplet i j k do not give nontrivial solutions. It is obvious 1 just gives a trivial
result. The 10 wavefunctions of the multiplet 10 are constructed as

Fijk = �
(1)

i �
(2)

j �
(3)

k + �
(1)

j �
(2)

i �
(3)

k + �
(1)

k �
(2)

j �
(3)

i + (terms with j ↔ k exchanged). (45)

And the linear equations for these wavefunctions can be similarly constructed. Below, we
show part of the linear equations which will be required for our argument.

∂F111 = 3CF113 + 3AF111 + 3BF112

∂F112 = (2A + E)F112 + DF111 + IF113 + 2CF123 + 2BF122

∂F113 = HF112 + GF111 + (A − E)F113 + 2CF133 + 2BF123

∂F122 = CF223 + 2IF123 + 2DF112 + BF222 + (A + 2E)F122

(46)

with the same notation as in equation (44). The last equation of (46) shows that this
representation has linear equations having no λT term. Thus the multiplet 10 does not have the
problem which occurred in the case of 6. But it only leads to a rather special type of solution,
which is essentially that of the single component nonlinear Schrödinger equation. Let Fijk

be polynomials in λ such that Fijk = ∑m
n=0 Fn

ijkλ
n for some integer m. Then equations (46)

require that Fm
111 = Fm

112 = Fm
113 = Fm

222 = Fm
223 = Fm

233 = Fm
333 = 0 while Fm

122, F123, F133

are constants. It then requires Fm−1
111 = 0, which results in Fm−1

112 ψ1 = −F113ψ2,
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i.e. F122ψ
2
1 + 2F123ψ1ψ2 + F133ψ

2
2 = 0. Thus ψ1 ∝ ψ2 in this case. Higher multiplets

having six or nine boxes in Young’s tableaux would also have similar problems.
In section 2, we use equation (7) as the form of Fijk which is consistent with equation (6).

In fact, the most general form which is consistent with the equation is

F112 = (2ic2ψ2 + 2ic0ψ1)λ
m−1 +

m−2∑
i=0

F i
112λ

i

F233 = (−ic∗
0ψ

∗
1 − ic2ψ

∗
2 ) +

1

2

m−2∑
i=0

(
F i

112

)∗
λi

F113 = (2ic1ψ1 − 2ic∗
0ψ2)λ

m−1 +
m−2∑
i=0

F i
113λ

i

F223 = (2ic1ψ
∗
1 − 2ic∗

0ψ
∗
2 )λm−1 −

m−2∑
i=0

(
F i

113

)∗
λi

F122 = c0λ
m +

m−1∑
i=0

F i
122λ

i F133 = −c∗
0λ

m −
m−1∑
i=0

(
F i

122

)∗
λi

F123 = c1λ
m +

m−1∑
i=0

F i
123λ

i F132 = c2λ
m +

m−1∑
i=0

F i
132λ

i

(47)

where c0 is a complex constant, c1, c2 are real constants, F i
112, F

i
113, F

i
122 are complex functions

of z, z̄ and F i
123, F

i
132 are real functions. But this general form does not lead to any new

solutions. For example, solutions obtained from the c0 = 1 theory (it means a theory with
c1 = c2 = 0, c0 = 1,m = 1 in equation (47)) are related to the solutions in equation (32) of
c0 = 0 theory in section 3 by the following transformation:

c0 = 0 theory ↔ c0 = 1 theory

ψ1 ↔ ψ1 + ψ2

ψ2 ↔ ψ2 − ψ1
(48)

d1

c1
↔ d2 − d1 + d0 + d∗

0

2
d2

c2
↔ −d2 + d1 + d0 + d∗

0

2

d∗
0 ↔ −d2 + d1 + d∗

0 − d0

2
.

More general theories using the form in equation (47) with m = 1 can be shown to be reduced
to our solutions of the c0 = 0 theory.

Using the expression in equation (47) with m � 2, we can obtain higher-phase periodic
solutions which would be described in terms of Riemann’s N-phase theta functions. The
difficulty in this program will be the effectivization problem such that the obtained solution
should satisfy equation (10). This together with the difficulty in treating Riemann theta
functions would be the obstacle to applying it to real physical problems.

The stability analysis of the solution is another important physical problem to be done. A
similar study for the case of the one-component nonlinear Schrödinger equation was done in
[13]. Especially it gives a method for the analysis of the long-time behaviour of instabilities
using the periodic solution of the integrable system.
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